Abstract
Background and Purpose: Poor walking endurance in Parkinson disease (PD) may be attributable to both bioenergetic and biomechanical factors, but locomotor training methods addressing both these factors simultaneously are understudied. Our objective was to examine the effects of overground locomotor training (OLT) on walking endurance in individuals with mild-to-moderate PD, and to further explore potential cardiorespiratory contributions.
Methods: A single-arm, longitudinal design was used to examine the effects of 24 biweekly sessions of OLT in people with mild-to-moderate PD (n = 12). Walking endurance was measured as total distance walked during a 10-minute walk test (10minWT). Oxygen uptake (V[spacing dot above]O2) on-kinetic profiles were determined using a monoexponential function. Perceived fatigability was assessed following the 10minWT using a self-report scale. Magnitude of change in primary outcomes was assessed using Cohen's d and adjusted for sample size (Cohen's d(unbiased)).
Results: Participants executed 3036 (297) steps and maintained 65.5% (8%) age-predicted heart rate maximum in a typical session lasting 56.9 (2.5) minutes. Medium effects in total distance walked-885.9 (157.2) versus 969.5 (140.9); Cohen's d(unbiased) = 0.54-and phase II time constant of the V[spacing dot above]O2 on-kinetic profile-33.7 (12.3) versus 25.9 (15.3); Cohen's d(unbiased) = 0.54-were observed alongside trivial effects for perceived fatigability-4.7 (1.4) versus 4.8 (1.5); Cohen's d(unbiased) = 0.11-following OLT.
Discussion and Conclusions: These preliminary findings may demonstrate the potential for moderate-intensity OLT to improve walking endurance and enhance cardiorespiratory adjustments to walking activity in adults with mild-to-moderate PD.
Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A407).