Authors

  1. Wallace, Taylor C. PhD, CFS, FACN
  2. Blusztajn, Jan Krzysztof PhD
  3. Caudill, Marie A. PhD, RD
  4. Klatt, Kevin C. MS
  5. Natker, Elana MS, RD
  6. Zeisel, Steven H. MD, PhD
  7. Zelman, Kathleen M. MPH, RD, LD

Abstract

Choline has been recognized as an essential nutrient by the Food and Nutrition Board of the National Academies of Medicine since 1998. Its metabolites have structural, metabolic, and regulatory roles within the body. Humans can endogenously produce small amounts of choline via the hepatic phosphatidylethanolamine N-methyltransferase pathway. However, the nutrient must be consumed exogenously to prevent signs of deficiency. The Adequate Intake (AI) for choline was calculated at a time when dietary intakes across the population were unknown for the nutrient. Unlike the traditional National Academy of Medicine approach of calculating an AI based on observed or experimentally determined approximations or estimates of intake by a group (or groups) of healthy individuals, calculation of the AI for choline was informed in part by a depletion-repletion study in adult men who, upon becoming deficient, developed signs of liver damage. The AI for other gender and life-stage groups was calculated based on standard reference weights, except for infants 0 to 6 months, whose AI reflects the observed mean intake from consuming human breast milk. Recent analyses indicate that large portions of the population (ie, approximately 90% of Americans), including most pregnant and lactating women, are well below the AI for choline. Moreover, the food patterns recommended by the 2015-2020 Dietary Guidelines for Americans are currently insufficient to meet the AI for choline in most age-sex groups. An individual's requirement for choline is dependent on common genetic variants in genes required for choline, folate, and 1-carbon metabolism, potentially increasing more than one-third of the population's susceptibly to organ dysfunction. The American Medical Association and American Academy of Pediatrics have both recently reaffirmed the importance of choline during pregnancy and lactation. New and emerging evidence suggests that maternal choline intake during pregnancy, and possibly lactation, has lasting beneficial neurocognitive effects on the offspring. Because choline is found predominantly in animal-derived foods, vegetarians and vegans may have a greater risk for inadequacy. With the 2020-2025 Dietary Guidelines for Americans recommending expansion of dietary information for pregnant women, and the inclusion of recommendations for infants and toddlers 0 to 2 years, better communication of the role that choline plays, particularly in the area of neurocognitive development, is critical. This narrative review summarizes the peer-reviewed literature and discussions from the 2018 Choline Science Summit, held in Washington, DC, in February 2018.