Abstract
Background and Purpose: Decreased walking speed after stroke may be related to changes in temporal and distance gait factors, endurance, and balance. Functional gait deficits may also be related to changes in coordination, specifically between transverse (yaw) plane trunk movements. Our aim was to determine the relationship between intersegmental coordination during gait and functional gait and balance deficits in individuals with stroke.
Methods: Eleven individuals with chronic stroke and 11 age-matched subjects without disability participated in 2 sessions. In Session 1, clinical evaluations of trunk/limb impairment (Chedoke-McMaster Stroke Assessment), functional gait (Functional Gait Assessment), and balance (BesTest) were performed. In Session 2, gait kinematics during eight 30-second walking trials on a self-paced treadmill at 2 speeds (comfortable and equivalent) were recorded. Equivalence of walking speeds was obtained by asking subjects without disability to walk approximately 20% slower and subjects with stroke to walk approximately 20% faster than their comfortable speed. Thorax and pelvis 3-dimensional angular ranges of motion (ROMs) and intersegmental coordination using the continuous relative phase were analyzed.
Results: Comfortable walking speed was slower in subjects with stroke (0.78 m/s) than in subjects without disability (1.22 m/s), despite matched cadences. At both comfortable and equivalent walking speeds (0.97-0.98 m/s), participants with stroke used more thoracic ROM than pelvic transverse ROM in comparison with subjects without disability. Transverse thorax-pelvis coordination was similar between groups when walking speeds were equivalent, but there was more in-phase coordination in participants with stroke walking at their comfortable, slower speed. In subjects with stroke, thoracic ROM and continuous relative phase were correlated with several clinical functional gait and balance measures.
Discussion and Conclusion: Changes in segmental transverse ROM and coordination were associated with poor gait and with balance abilities in individuals with stroke. Interventions focusing on recovery of these movement characteristics may lead to better clinical outcomes.