Abstract
Background and Purpose: A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. Others utilize interventions tailored to patients but do not describe the clinical decision-making process utilized to develop and modify interventions. This case study describes a robot-based intervention customized to match the goals and clinical presentation of person with upper extremity hemiparesis secondary to stroke.
Methods: The patient, P.M., was an 85-year-old man with left hemiparesis secondary to an intracerebral hemorrhage 5 years prior to examination. Outcomes were measured before and after a 1-month period of home therapy and after a 1-month robotic intervention. The intervention was designed to address specific impairments identified during his physical therapy examination. When necessary, activities were modified on the basis of response to the first week of treatment.
Outcomes: P.M. trained in 12 sessions, using six virtually simulated activities. Modifications to original configurations of these activities resulted in performance improvements in five of these activities. P.M. demonstrated a 35-second improvement in Jebsen Test of Hand Function time and a 44-second improvement in Wolf Motor Function Test time subsequent to the robotic training intervention. Reaching kinematics, 24-hour activity measurement, and scores on the Hand and Activities of Daily Living scales of the Stroke Impact Scale all improved as well.
Discussion: A customized program of robotically facilitated rehabilitation was associated with short-term improvements in several measurements of upper extremity function in a patient with chronic hemiparesis.